Borcherds products and arithmetic intersection theory on Hilbert modular surfaces

Link:
Autor/in:
Erscheinungsjahr:
2007
Medientyp:
Text
Schlagworte:
  • Article
  • Article
Beschreibung:
  • We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic self-intersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/403d28fb-452a-4722-a2ad-e1270dced062