Quark-Gluon Tagging: Machine Learning vs Detector

Link:
Autor/in:
Erscheinungsjahr:
2019
Medientyp:
Text
Beschreibung:
  • Distinguishing quarks from gluons based on low-level detector output is one of the most challenging applications of multi-variate and machine learning techniques at the LHC. We first show the performance of our 4-vector-based LoLa tagger without and after considering detector effects. We then discuss two benchmark applications, mono-jet searches with a gluon-rich signal and di-jet resonances with a quark-rich signal. In both cases an immediate benefit compared to the standard event-level analysis exists.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/2bc33f6a-c6ff-48e0-a0d1-c98c32823109