Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces

Link:
Autor/in:
Erscheinungsjahr:
2017
Medientyp:
Text
Schlagworte:
  • Conjecture
  • Height
  • Abelian varieties
  • Prime
  • Integer
  • Conjecture
  • Height
  • Abelian varieties
  • Prime
  • Integer
Beschreibung:
  • We give an explicitly computable lower bound for the arithmetic self-intersection number (omega) over bar (2) of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/0043a28d-3d27-429b-bc4d-66ec5cbdf022