Geometry and holonomy of indecomposable cones

Link:
Autor/in:
Erscheinungsjahr:
2021
Medientyp:
Text
Schlagworte:
  • math.DG
  • Primary 53C50, Secondary 53C29, 53B30
Beschreibung:
  • We study the geometry and holonomy of semi-Riemannian, time-like metric cones that are indecomposable, i.e., which do not admit a local decomposition into a semi-Riemannian product. This includes irreducible cones, for which the holonomy can be classified, as well as non irreducible cones. The latter admit a parallel distribution of null $k$-planes, and we study the cases $k=1$ and $k=2$ in detail. In these cases, i.e., when the cone admits a distribution of parallel null tangent lines or planes, we give structure theorems about the base manifold. Moreover, in the case $k=1$ and when the base manifold is Lorentzian, we derive a description of the cone holonomy. This result is obtained by a computation of certain cocycles of indecomposable subalgebras in $\mathfrak{so}(1,n-1)$.
  • We study the geometry and holonomy of semi-Riemannian, time-like metric cones that are indecomposable, i.e., which do not admit a local decomposition into a semi-Riemannian product. This includes irreducible cones, for which the holonomy can be classified, as well as non irreducible cones. The latter admit a parallel distribution of null k-planes, and we study the cases k=1 and k=2 in detail. In these cases, i.e., when the cone admits a distribution of parallel null tangent lines or planes, we give structure theorems about the base manifold. Moreover, in the case k=1 and when the base manifold is Lorentzian, we derive a description of the cone holonomy. This result is obtained by a computation of certain cocycles of indecomposable subalgebras in so(1, n ́1).
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/58b05c40-c761-4297-ba83-64f3d7a13160