Mesoscale Hydrologic Model based historical streamflow simulation over Europe at 1/16 degree

Link:
Autor/in:
Beteiligte Person:
  • Rakovec, Oldrich
Verlag/Körperschaft:
World Data Center for Climate (WDCC) at DKRZ
Erscheinungsjahr:
2022
Medientyp:
Datensatz
Schlagworte:
  • Climate
  • Discharge
  • coastDat-Land-Ocean-Fluxes
  • flow direction network
  • mHM
  • river runoff
Beschreibung:
  • Project: coastDat - Regional Water and Matter Fluxes at the Land-Ocean Interface - In order to better understand the global coastal systems and the dangers and risks associated with them, it is important to examine the atmosphere, the land, hydrology, the ocean and especially their interactions and feedbacks. In the “Regional Land and Atmosphere Modeling” department of the Institute of Coastal Systems - Analysis and Modeling at Helmholtz-Zentrum Hereon, we model water and matter transport at the land surface. Our aim is to quantify the associated cycles of water and matter and their changes, mainly for the transition from land to the ocean. Our work contributes to GCOAST (Geesthacht Coupled cOAstal model SysTem) --> https://www.hereon.de/institutes/coastal_systems_analysis_modeling/research/gcoast/index.php.en Summary: Model runs over Europe were conducted within the ESM project (www.esm-project.net/) for the Frontier Simulations supporting the water and matter fluxes from the European landmass to receiving water bodies (Baltic Sea, Atlantic Ocean and the Mediterranean Sea). Daily discharge from the mesoscale Hydrologic Model (mHM; Samaniego et al., 2010; Kumar et al., 2013; Code version: git.ufz.de/mhm/mhm git version: 35b5cb1) operated at the spatial resolution of 1/16deg for the simulation period from 1.1.1960-31.12.2019 across the European domain (Longitude -11 to 41 Latitude 35 to 72). Model runs were conducted within the ESM project (www.esm-project.net/) for the Frontier Simulations supporting the water and matter fluxes from the European landmass to receiving water bodies (Baltic Sea, Atlantic Ocean and Mediterranian Sea). Special consideration was given to the coastal cells by filtering out those (bordering) grid cells that do not have 100% landmass (i.e., cells with a significant proportion of water bodies/sea/ocean coverage). Meteorological forcing data are based on the E-OBS v21e (daily precipitation, temperature, Hofstra et al. 2009), potential evapotranspiration is based on the Hargreaves-Samani method. Soil characteristics are obtained from the global SoilGrids database (Hengtl et al. 2014; the land cover is derived from the Globcover_V2 (http://due.esrin.esa.int/page_globcover.php); geomorphological features are based on the GMTED2010 (Danielson et al., 2011). Model parameterization was constrained using the observed discharge time series from the GRDC stations (https://portal.grdc.bafg.de/), satisfying the following three conditions: gauge LAT>48degN, area> 5000km2, area <170000km2. Multi-basin calibration and validation were employed to check the consistency of model simulations following Rakovec et al., 2016 and Samaniego et al. 2019, as follows. Calibration objective function using KGE, DDS algorithm with 500 iterations, to account for uncertainty in the calibration process and the basin selections, 50 random initial conditions were randomly drawn sub-set of basins (N=6basins). The best parameter set in the cross-validations across 1201 basins was selected for the final run (ID: 542). A static 2D file of flow direction over Europe at the routing resolution 1/16deg. Internal upscaling to 1/16deg from the higher resolution (1/512deg) done within mHM (Code version: mesoscale Hydrologic Model (git.ufz.de/mhm/mhm git version: 35b5cb1). Special consideration was given to the coastal cells by filtering out those (bordering) grid cells that do not have 100% landmass (i.e., cells with a significant proportion of water bodies/sea/ocean coverage). Flow direction network (lat,lon) and routed runoff (time,lat,lon) at 1/16deg are provided as separate datasets.
relatedIdentifier:
DOI 10.1029/2008wr007327 DOI 10.1029/2009jd011799 DOI 10.1029/2012wr012195 DOI 10.1175/bams-d-17-0274.1 DOI 10.1175/jhm-d-15-0054.1 DOI 10.1371/journal.pone.0105992 DOI 10.3133/ofr20111073 DOI 10.5281/zenodo.1069202
Lizenz:
  • CC BY 4.0
Quellsystem:
Forschungsdaten DKRZ

Interne Metadaten
Quelldatensatz
oai:wdcc.dkrz.de:Datacite4_3892980_20220124