Controlled excitation and resonant acceleration of ultracold few-boson systems by driven interactions in a harmonic trap

Link:
Autor/in:
Erscheinungsjahr:
2012
Medientyp:
Text
Schlagworte:
  • Lattices
  • Gases
  • Harmonic trap
  • Atoms
  • Bose-Einstein Condensates
  • Lattices
  • Gases
  • Harmonic trap
  • Atoms
  • Bose-Einstein Condensates
Beschreibung:
  • We investigate the excitation properties of finite ultracold bosonic systems in a one-dimensional harmonic trap with a time-dependent interaction strength. The driving of the interatomic coupling induces excitations of the relative motion exclusively with specific and controllable contributions of momentarily excited many-body states. Mechanisms for selective excitation to few-body analogs of collective modes and acceleration occur in the vicinity of resonances. Via the few-body spectrum and a Floquet analysis, we study the excitation mechanisms and the corresponding impact of the driving frequency and strength as well as the initial correlation of the bosonic state. The fundamental case of two atoms is analyzed in detail and forms a key ingredient for the bottom-up understanding of cases with higher atom numbers, thereby examining finite-size corrections to macroscopic collective modes of oscillation.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/2a389d26-aa43-4272-b896-0514270bc2b5