Human action recognition with hierarchical growing neural gas learning

Link:
Autor/in:
Beteiligte Personen:
  • Wermter, Stefan
  • Weber, Cornelius
  • Duch, Włodzisław
  • Honkela, Timo
  • Koprinkova-Hristova, Petia
  • Magg, Sven
  • Palm, Günther
  • Villa, AlessandroE.P.
Verlag/Körperschaft:
Springer International Publishing
Erscheinungsjahr:
2014
Medientyp:
Text
Schlagworte:
  • assistive system
  • growing neural gas
  • human action recognition
  • motion clustering
Beschreibung:
  • We propose a novel biologically inspired framework for the recognition of human full-body actions. First, we extract body pose and motion features from depth map sequences. We then cluster pose-motion cues with a two-stream hierarchical architecture based on growing neural gas (GNG). Multi-cue trajectories are finally combined to provide prototypical action dynamics in the joint feature space. We extend the unsupervised GNG with two labelling functions for classifying clustered trajectories. Noisy samples are automatically detected and removed from the training and the testing set. Experiments on a set of 10 human actions show that the use of multi-cue learning leads to substantially increased recognition accuracy over the single-cue approach and the learning of joint pose-motion vectors. © 2014 Springer International Publishing Switzerland.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/ff799659-d0f7-47e2-a40e-337781118e08