Low-rank diffusion matrix estimation for high-dimensional time-changed Lévy processes

Link:
Autor/in:
Erscheinungsjahr:
2018
Medientyp:
Text
Schlagworte:
  • Lasso-type estimator
  • Minimax convergence rates
  • Nonlinear inverse problem
  • Oracle inequalities
  • Time-changed Lévy process
  • Volatility estimation
Beschreibung:
  • The estimation of the diffusion matrix Sigma of a high-dimensional, possibly time-changed Levy process is studied, based on discrete observations of the process with a fixed distance. A low-rank condition is imposed on Sigma. Applying a spectral approach, we construct a weighted least-squares estimator with nuclear-norm-penalisation. We prove oracle inequalities and derive convergence rates for the diffusion matrix estimator. The convergence rates show a surprising dependency on the rank of Sigma and are optimal in the minimax sense for fixed dimensions. Theoretical results are illustrated by a simulation study.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/4482f5f1-3668-4096-b698-e52b1bb44f44