Zum Inhalt springen
Comoving-frame radiative transfer in arbitrary velocity fields: II. Large scale applications
-
Link:
-
-
Autor/in:
-
-
Erscheinungsjahr:
-
2009
-
Medientyp:
-
Text
-
Schlagworte:
-
-
Polarization
-
Radiative transfer
-
Scattering polarization
-
Galaxies
-
Stars
-
Planets
-
Polarization
-
Radiative transfer
-
Scattering polarization
-
Galaxies
-
Stars
-
Planets
-
Beschreibung:
-
-
Aims. A solution of the radiative-transfer problem in arbitrary velocity fields introduced in a previous paper, has limitations in its applicability. For large-scale applications, the methods described also require large memory sets that are commonly not available to state-of-the-art computing hardware. In this work, we modify the algorithm to allow the computation of large-scale problems. Methods. We reduce the memory footprint via a domain decomposition. By introducing iterative Gauss-Seidel type solvers, we improve the speed of the overall computation. Because of the domain decomposition, the new algorithm requires the use of parallel-computing systems. Results. The algorithm that we present permits large-scale solutions of radiative-transfer problems that include arbitrary wavelength couplings. In addition, we discover a quasi-analytic formal solution of the radiative transfer that significantly improves the overall computation speed. More importantly, this method ensures that our algorithm can be applied to multi-dimensional Lagrangian radiative-transfer calculations. In multi-dimensional atmospheres, velocity fields are in general chaotic ensuring that the inclusion of arbitrary wavelength couplings are mandatory. . © 2009 ESO.
-
Lizenz:
-
-
info:eu-repo/semantics/openAccess
-
Quellsystem:
-
Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/993474ff-3039-4c34-b4d7-a3002cffaf1b