Mapping class group actions and their applications to 3D gravity

Link:
Autor/in:
Beteiligte Person:
  • Runkel, Ingo
Verlag/Körperschaft:
Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky
Erscheinungsjahr:
2022
Medientyp:
Text
Schlagworte:
  • Mapping class group
  • Defects
  • Quantum gravity
  • TQFT
  • 510: Mathematik
  • 31.00: Mathematik: Allgemeines
  • Darstellungstheorie
  • Quantengravitation
  • Topologische Quantenfeldtheorie
  • Mathematische Physik
  • Monoidale Kategorie
  • ddc:510:
  • Darstellungstheorie
  • Quantengravitation
  • Topologische Quantenfeldtheorie
  • Mathematische Physik
  • Monoidale Kategorie
Beschreibung:
  • In this thesis we study mapping class group actions of the three-dimensional Reshetikhin-Turaev topological quantum field theory motivated by questions in three-dimensional quantum gravity where mapping class group averages appear as candidates for gravity partition functions. One of the main results is a bulk-boundary correspondence between mapping class group averages and a rational conformal field theory whose chiral mapping class group representations are irreducible and obey a finiteness property. As primary examples we find that Ising-type modular fusion categories and their Reshetikhin-Turaev topological quantum field theories are characterised by these properties. Finally, for a given modular fusion category C we show that if the mapping class group representation on every surface without marked points is irreducible then there is a unique indecomposable C-module category with module trace, namely C itself. Such module categories describe surface defects in three-dimensional Reshetikhin-Turaev topological quantum field theories. This links irreducibility of mapping class group representations and absence of non-trivial surface defects.
Lizenzen:
  • http://purl.org/coar/access_right/c_abf2
  • info:eu-repo/semantics/openAccess
  • https://creativecommons.org/licenses/by/4.0/
Quellsystem:
E-Dissertationen der UHH

Interne Metadaten
Quelldatensatz
oai:ediss.sub.uni-hamburg.de:ediss/9945