Eddy-current compensated diffusion weighting with a single refocusing RF pulse.

Link:
Autor/in:
Erscheinungsjahr:
2009
Medientyp:
Text
Beschreibung:
  • A modification of the Stejskal-Tanner diffusion-weighting preparation with a single refocusing RF pulse is presented which involves three gradient lobes that can be adjusted to null eddy currents with any given decay rate to reduce geometric distortions in diffusion-weighted echo-planar imaging (EPI). It has a very similar compensation performance as the commonly used double-spin-echo preparation but (i) is less sensitive to flip angle imperfections, e.g. along the slice profile, and B(1) inhomogeneities and (ii) can yield shorter echo times for moderate b values, notably for longer echo trains as required for higher spatial resolution. It therefore can provide an increased signal-to-noise ratio as is simulated numerically and demonstrated experimentally in water phantoms and the human brain for standard EPI (2.0 x 2.0 mm(2)) and high-resolution EPI of inner field-of-views using 2D-selective RF excitations (0.5 x 1.0 mm(2)). Thus, the presented preparation may help to overcome current limitations of diffusion-weighted EPI, in particular at high static magnetic fields.
  • A modification of the Stejskal-Tanner diffusion-weighting preparation with a single refocusing RF pulse is presented which involves three gradient lobes that can be adjusted to null eddy currents with any given decay rate to reduce geometric distortions in diffusion-weighted echo-planar imaging (EPI). It has a very similar compensation performance as the commonly used double-spin-echo preparation but (i) is less sensitive to flip angle imperfections, e.g. along the slice profile, and B(1) inhomogeneities and (ii) can yield shorter echo times for moderate b values, notably for longer echo trains as required for higher spatial resolution. It therefore can provide an increased signal-to-noise ratio as is simulated numerically and demonstrated experimentally in water phantoms and the human brain for standard EPI (2.0 x 2.0 mm(2)) and high-resolution EPI of inner field-of-views using 2D-selective RF excitations (0.5 x 1.0 mm(2)). Thus, the presented preparation may help to overcome current limitations of diffusion-weighted EPI, in particular at high static magnetic fields.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/09f371aa-f072-40c7-a3d0-6164df06c148