A First Step Towards Even More Sparse Encodings of Probability Distributions
- Link:
- Autor/in:
- Beteiligte Personen:
-
- Katzouris, Nikos
- Artikis, Alexander
- Erscheinungsjahr:
- 2022
- Medientyp:
- Text
- Schlagworte:
-
- "Logic Programming; Exact Inference; Answer Sets"
- "Artificial Intelligence; Algorithms; Semantics"
- Probabilistic graphical models
- Sparse encoding
- Lifting
- "Logic Programming; Exact Inference; Answer Sets"
- "Artificial Intelligence; Algorithms; Semantics"
- Probabilistic graphical models
- Sparse encoding
- Lifting
- Beschreibung:
-
Real world scenarios can be captured with lifted probability distributions. However, distributions are usually encoded in a table or list, requiring an exponential number of values. Hence, we propose a method for extracting first-order formulas from probability distributions that require significantly less values by reducing the number of values in a distribution and then extracting, for each value, a logical formula to be further minimized. This reduction and minimization allows for increasing the sparsity in the encoding while also generalizing a given distribution. Our evaluation shows that sparsity can increase immensely by extracting a small set of short formulas while preserving core information.
- Lizenz:
-
- info:eu-repo/semantics/closedAccess
- Quellsystem:
- Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/27f4b2cd-07c9-470b-ac7f-7a440636adaf