A First Step Towards Even More Sparse Encodings of Probability Distributions

Link:
Autor/in:
Beteiligte Personen:
  • Katzouris, Nikos
  • Artikis, Alexander
Erscheinungsjahr:
2022
Medientyp:
Text
Schlagworte:
  • "Logic Programming; Exact Inference; Answer Sets"
  • "Artificial Intelligence; Algorithms; Semantics"
  • Probabilistic graphical models
  • Sparse encoding
  • Lifting
  • "Logic Programming; Exact Inference; Answer Sets"
  • "Artificial Intelligence; Algorithms; Semantics"
  • Probabilistic graphical models
  • Sparse encoding
  • Lifting
Beschreibung:
  • Real world scenarios can be captured with lifted probability distributions. However, distributions are usually encoded in a table or list, requiring an exponential number of values. Hence, we propose a method for extracting first-order formulas from probability distributions that require significantly less values by reducing the number of values in a distribution and then extracting, for each value, a logical formula to be further minimized. This reduction and minimization allows for increasing the sparsity in the encoding while also generalizing a given distribution. Our evaluation shows that sparsity can increase immensely by extracting a small set of short formulas while preserving core information.

Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/27f4b2cd-07c9-470b-ac7f-7a440636adaf