Abstract life-cycle modeling of cyber-physical systems in civil engineering

Link:
Autor/in:
Verlag/Körperschaft:
Hamburg University of Technology
Erscheinungsjahr:
2020
Medientyp:
Text
Beschreibung:
  • With recent advancements in embedded sensing technologies for the Internet of Things, cyber-physical systems, instrumented with structural health monitoring and control applications, are increasingly implemented in civil engineering. Several approaches towards metamodeling cyber-physical systems in civil engineering have been proposed in recent years, based on unified modeling language (UML), category theory, and abstract algebra. However, life-cycle metamodeling of cyber-physical systems in civil engineering has not yet been addressed in its full generality. The evolution of a cyber-physical system (CPS) during its life cycle typically requires the evolution of the corresponding metamodel, because different components of a system may be added or removed. Therefore, life-cycle metamodeling approaches must provide possibilities to de-scribe temporal behavior of CPS components, which is not supported by current metamodeling approaches utilized in civil engineering practice. Thus, in this study, an abstract modeling concept for integrating tem-poral evolutions of cyber-physical systems in civil engineering into existing metamodeling approaches is pro-posed. The integration starts with a detailed description of a typical CPS life cycle in civil engineering, under-lying unique features for each life-cycle phase. The features characterizing phases of a CPS life cycle are abstracted and formalized by abstract algebraic constructions, supporting diagram-based modeling approach-es, such as UML. Finally, an illustrative example of abstract CPS life-cycle modeling for additive manufac-turing of concrete is presented.
Quellsystem:
TUHH Open Research

Interne Metadaten
Quelldatensatz
oai:tore.tuhh.de:11420/9194