Holomorphic symplectic fermions

Link:
Autor/in:
Erscheinungsjahr:
2017
Medientyp:
Text
Schlagworte:
  • Vertex operator algebras
  • Vertex algebra
  • Affine vertex
  • Algebra
  • Category
  • Module
  • Vertex operator algebras
  • Vertex algebra
  • Affine vertex
  • Algebra
  • Category
  • Module
Beschreibung:
  • Let V be the even part of the vertex operator super-algebra of r pairs of symplectic fermions. Up to two conjectures, we show that V admits a unique holomorphic extension if r is a multiple of 8, and no holomorphic extension otherwise. This is implied by two results obtained in this paper: (1) If r is a multiple of 8, one possible holomorphic extension is given by the lattice vertex operator algebra for the even self dual lattice D-r(broken vertical bar) r with shifted stress tensor. (2) We classify Lagrangian algebras in SF(h), a ribbon category associated to symplectic fermions. The classification of holomorphic extensions of V follows from (1) and (2) if one assumes that SF(h) is ribbon equivalent to Rep(V), and that simple modules of extensions of V are in one-to-one relation with simple local modules of the corresponding commutative algebra in SF(h).
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/df809370-96cd-43dc-a5f6-721fd6b44497