Zum Inhalt springen
Dirac-type results for loose Hamilton cycles in uniform hypergraphs
-
Link:
-
-
Autor/in:
-
-
Erscheinungsjahr:
-
2010
-
Medientyp:
-
Text
-
Schlagworte:
-
-
Uniform hypergraph
-
Hypergraph
-
Minimum codegree
-
Graph In Graph Theory
-
Coloring
-
Graphic Methods
-
Hamilton cycles
-
Dirac's theorem
-
Hypergraphs
-
Uniform hypergraph
-
Hypergraph
-
Minimum codegree
-
Graph In Graph Theory
-
Coloring
-
Graphic Methods
-
Beschreibung:
-
-
A classic result of G.A. Dirac in graph theory asserts that for n ≥ 3 every n-vertex graph with minimum degree at least n / 2 contains a spanning (so-called Hamilton) cycle. G.Y. Katona and H.A. Kierstead suggested a possible extension of this result for k-uniform hypergraphs. There a Hamilton cycle of an n-vertex hypergraph corresponds to an ordering of the vertices such that every k consecutive (modulo n) vertices in the ordering form an edge. Moreover, the minimum degree is the minimum (k - 1)-degree, i.e. the minimum number of edges containing a fixed set of k - 1 vertices. V. Rödl, A. Ruciński, and E. Szemerédi verified (approximately) the conjecture of Katona and Kierstead and showed that every n-vertex, k-uniform hypergraph with minimum (k - 1)-degree (1 / 2 + o (1)) n contains such a tight Hamilton cycle. We study the similar question for Hamilton ℓ-cycles. A Hamilton ℓ-cycle in an n-vertex, k-uniform hypergraph (1 ≤ ℓ <k) is an ordering of the vertices and an ordered subset of the edges such that each such edge corresponds to k consecutive (modulo n) vertices and two consecutive edges intersect in precisely ℓ vertices. We prove sufficient minimum (k - 1)-degree conditions for Hamilton ℓ-cycles if ℓ <k / 2. In particular, we show that for every ℓ <k / 2 every n-vertex, k-uniform hypergraph with minimum (k - 1)-degree (1 / (2 (k - ℓ)) + o (1)) n contains such a loose Hamilton ℓ-cycle. This degree condition is approximately tight and was conjectured by D. Kühn and D. Osthus (for ℓ = 1), who verified it when k = 3. Our proof is based on the so-called weak regularity lemma for hypergraphs and follows the approach of V. Rödl, A. Ruciński, and E. Szemerédi. © 2009 Elsevier Inc. All rights reserved.
-
Lizenz:
-
-
info:eu-repo/semantics/restrictedAccess
-
Quellsystem:
-
Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/2cf867a7-22d9-4ede-a6c1-92a579d26fa8