A Kernel Bayesian Adaptive Resonance Theory with A Topological Structure
- Link:
- Autor/in:
- Erscheinungsjahr:
- 2019
- Medientyp:
- Text
- Schlagworte:
-
- adaptive resonance theory
- kernel Bayes rule
- topology construction
- Unsupervised clustering
- Beschreibung:
-
This paper attempts to solve the typical problems of self-organizing growing network models, i.e. (a) an influence of the order of input data on the self-organizing ability, (b) an instability to high-dimensional data and an excessive sensitivity to noise, and (c) an expensive computational cost by integrating Kernel Bayes Rule (KBR) and Correntropy-Induced Metric (CIM) into Adaptive Resonance Theory (ART) framework. KBR performs a covariance-free Bayesian computation which is able to maintain a fast and stable computation. CIM is a generalized similarity measurement which can maintain a high-noise reduction ability even in a high-dimensional space. In addition, a Growing Neural Gas (GNG)-based topology construction process is integrated into the ART framework to enhance its self-organizing ability. The simulation experiments with synthetic and real-world datasets show that the proposed model has an outstanding stable self-organizing ability for various test environments.
- Lizenz:
-
- info:eu-repo/semantics/openAccess
- Quellsystem:
- Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/8232e157-286d-41c7-9733-b84c71722051