We study the quantum phases of one-dimensional Bose-Fermi mixtures in optical lattices. Assuming repulsive interparticle interactions, equal mass, and unit total filling, we calculate the ground-state phase diagram by means of both the Tomonaga-Luttinger liquid theory and time-evolving block decimation method. We demonstrate the existence of a counterflow superfluid phase of polaron pairs, which are composite particles consisting of two fermions and two bosonic holes, in a broad range of the parameter space. We find that this phase naturally emerges in Yb-174-Yb-173 mixtures, realized in recent experiments, at low temperatures. DOI: 10.1103/PhysRevA.87.021603