Evaluating the Global internal wave model IDEMIX using finestructure methods

Link:
Autor/in:
Erscheinungsjahr:
2017
Medientyp:
Text
Schlagworte:
  • Model evaluation/performance
  • Subgrid-scale processes
  • Parameterization
  • Diapycnal mixing
  • Gravity waves
  • Profilers, oceanic
Beschreibung:
  • Small-scale turbulent mixing affects large-scale ocean processes such as the global overturning circulation but remains unresolved in ocean models. Since the breaking of internal gravity waves is a major source of this mixing, consistent parameterizations take internal wave energetics into account. The model Internal Wave Dissipation, Energy and Mixing (IDEMIX) predicts the internal wave energy, dissipation rates, and diapycnal diffusivities based on a simplification of the spectral radiation balance of the wave field and can be used as a mixing module in global numerical simulations. In this study, it is evaluated against finestructure estimates of turbulent dissipation rates derived from Argo float observations. In addition, a novel method to compute internal gravity wave energy from finescale strain information alone is presented and applied. IDEMIX well reproduces the magnitude and the large-scale variations of the Argo-derived dissipation rate and energy level estimates. Deficiencies arise with respect to the detailed vertical structure or the spatial extent of mixing hot spots. This points toward the need to improve the forcing functions in IDEMIX, both by implementing additional physical detail and by better constraining the processes already included in the model.Aprominent example is the energy transfer from the mesoscale eddies to the internal gravity waves, which is identified as an essential contributor to turbulent mixing in idealized simulations but needs to be better understood through the help of numerical, analytical, and observational studies in order to be represented realistically in ocean models. © 2017 American Meteorological Society.
  • Small-scale turbulent mixing affects large-scale ocean processes such as the global overturning circulation but remains unresolved in ocean models. Since the breaking of internal gravity waves is a major source of this mixing, consistent parameterizations take internal wave energetics into account. The model Internal Wave Dissipation, Energy and Mixing (IDEMIX) predicts the internal wave energy, dissipation rates, and diapycnal diffusivities based on a simplification of the spectral radiation balance of the wave field and can be used as a mixing module in global numerical simulations. In this study, it is evaluated against finestructure estimates of turbulent dissipation rates derived from Argo float observations. In addition, a novel method to compute internal gravity wave energy from finescale strain information alone is presented and applied. IDEMIX well reproduces the magnitude and the large-scale variations of the Argo-derived dissipation rate and energy level estimates. Deficiencies arise with respect to the detailed vertical structure or the spatial extent of mixing hot spots. This points toward the need to improve the forcing functions in IDEMIX, both by implementing additional physical detail and by better constraining the processes already included in the model.Aprominent example is the energy transfer from the mesoscale eddies to the internal gravity waves, which is identified as an essential contributor to turbulent mixing in idealized simulations but needs to be better understood through the help of numerical, analytical, and observational studies in order to be represented realistically in ocean models. © 2017 American Meteorological Society.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/937861b3-dbde-40f8-a667-b4ec6c5b0ec4