Applying Monocular Depth Estimation in RoboCup Soccer

Link:
Autor/in:
Erscheinungsjahr:
2022
Medientyp:
Text
Beschreibung:
  • We showcase a pipeline to train, evaluate, and deploy deep learning architectures for monocular depth estimation in the RoboCup Soccer Humanoid domain. In contrast to previous approaches, we apply the methods on embedded systems in highly dynamic but heavily constrained environments. The results indicate that our monocular depth estimation pipeline is usable in the RoboCup environment.

Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/86ff387d-edc0-48e5-bd95-0e8ea160729f