Person tracking based on a hybrid neural probabilistic model

Link:
Autor/in:
Beteiligte Person:
  • Honkela, Timo
Verlag/Körperschaft:
Springer
Erscheinungsjahr:
2011
Medientyp:
Text
Schlagworte:
  • Particle swarm optimization (PSO)
  • Genetic programming
  • Flexible neural
  • Fuzzy Systems
  • Fuzzy Inference
  • Neural Networks
  • Particle swarm optimization (PSO)
  • Genetic programming
  • Flexible neural
  • Fuzzy Systems
  • Fuzzy Inference
  • Neural Networks
Beschreibung:
  • This article presents a novel approach for a real-time person tracking system based on particle filters that use different visual streams. Due to the difficulty of detecting a person from a top view, a new architecture is presented that integrates different vision streams by means of a Sigma-Pi network. A short-term memory mechanism enhances the tracking robustness. Experimental results show that robust real-time person tracking can be achieved.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/9ff84a1e-eff3-43a4-9c77-0a56dcf9242e