Counting results for sparse pseudorandom hypergraphs II

Link:
Autor/in:
Erscheinungsjahr:
2017
Medientyp:
Text
Schlagworte:
  • Testing
  • Algorithms
  • Regularity lemma
  • Graph In Graph Theory
  • Coloring
  • Graphic Methods
  • Testing
  • Algorithms
  • Regularity lemma
  • Graph In Graph Theory
  • Coloring
  • Graphic Methods
Beschreibung:
  • We present a variant of a universality result of Roth (1986) for sparse, 3-uniform hypergraphs contained in strongly jumbled hypergraphs. One of the ingredients of our proof is a counting lemma for fixed hypergraphs in sparse ``pseudorandom{''} hypergraphs, which is proved in the companion paper (Counting results for sparse pseudorandom hypergraphs I). (C) 2017 Elsevier Ltd. All rights reserved.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/42c681f0-80be-446f-ae68-c5d9b07c596a