A Dimension Conjecture for q-Analogues of Multiple Zeta Values

Link:
Autor/in:
Beteiligte Personen:
  • Burgos Gil, José Ignacio
  • Ebrahimi-Fard, Kurusch
  • Gangl, Herbert
Verlag/Körperschaft:
Springer Nature Switzerland AG
Erscheinungsjahr:
2020
Medientyp:
Text
Schlagworte:
  • Multiple Zeta Values
  • Euler Sums
  • Harmonic Number
  • Identity
  • Polynomial
  • Generating Function
  • Multiple Zeta Values
  • Euler Sums
  • Harmonic Number
  • Identity
  • Polynomial
  • Generating Function
Beschreibung:
  • We study a class of q-analogues of multiple zeta values given by certain formal q-series with rational coefficients. After introducing a notion of weight and depth for these q-analogues of multiple zeta values we present dimension conjectures for the spaces of their weight- and depth-graded parts, which have a similar shape as the conjectures of Zagier and Broadhurst-Kreimer for multiple zeta values.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/c867e7ce-31d6-4527-81ca-f7bb11cd2e93