Cohomological arithmetic Chow rings

Link:
Autor/in:
Erscheinungsjahr:
2007
Medientyp:
Text
Schlagworte:
  • Arakelov geometry
  • Deligne–Beilinson cohomology
  • good hermitian metrics
  • sheaf cohomology
Beschreibung:
  • We develop a theory of abstract arithmetic Chow rings, where the role of the fibres at infinity is played by a complex of abelian groups that computes a suitable cohomology theory. As particular cases of this formalism we recover the original arithmetic intersection theory of Gillet and Soulé for projective varieties. We introduce a theory of arithmetic Chow groups, which are covariant with respect to arbitrary proper morphisms, and we develop a theory of arithmetic Chow rings using a complex of differential forms with log-log singularities along a fixed normal crossing divisor. This last theory is suitable for the study of automorphic line bundles. In particular, we generalize the classical Faltings height with respect to logarithmically singular hermitian line bundles to higher dimensional cycles. As an application we compute the Faltings height of Hecke correspondences on a product of modular curves. © 2007, Cambridge University Press. All rights reserved.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/4fc1306c-93b4-40fa-ba84-5fa66c7ecce0