A condensed form for nonlinear differential-algebraic equations in circuit theory

Link:
Autor/in:
Beteiligte Personen:
  • Benner, Peter
  • Bollhöfer, Matthias
  • Kressner, Daniel
  • Mehl, Christian
  • Stykel, Tatjana
Verlag/Körperschaft:
Springer International Publishing AG
Erscheinungsjahr:
2015
Medientyp:
Text
Schlagworte:
  • Differential-algebraic equations
  • Differential equations
  • Ordinary differential equations
  • Differential Equations
  • Ordinary Differential Equations
  • Runge Kutta Methods
  • Differential-algebraic equations
  • Differential equations
  • Ordinary differential equations
  • Differential Equations
  • Ordinary Differential Equations
  • Runge Kutta Methods
Beschreibung:
  • We consider nonlinear differential-algebraic equations arising in modelling of electrical circuits using modified nodal analysis and modified loop analysis. A condensed form for such equations under the action of a constant block diagonal transformation will be derived. This form gives rise to an extraction of over- and underdetermined parts and an index analysis by means of the circuit topology. Furthermore, for linear circuits, we construct index-reduced models which preserve the structure of the circuit equations.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/d9388d5f-80b8-4810-bd92-affc5935f2de