Towards an understanding of ramified extensions of structured ring spectra

Link:
Autor/in:
Erscheinungsjahr:
2020
Medientyp:
Text
Schlagworte:
  • Motivic Cohomology
  • K-Theory
  • Homotopy Theory
  • Algebra
  • Category
  • Module
  • Motivic Cohomology
  • K-Theory
  • Homotopy Theory
  • Algebra
  • Category
  • Module
Beschreibung:
  • We propose topological Hochschild homology as a tool for measuring ramification of maps of structured ring spectra. We determine second order topological Hochschild homology of the p-local integers. For the tamely ramified extension of the map from the connective Adams summand to p-local complex topological K-theory we determine the relative topological Hochschild homology and show that it detects the tame ramification of this extension. We show that the complexification map from connective topological real to complex K-theory shows features of a wildly ramified extension. We also determine relative topological Hochschild homology for some quotient maps with commutative quotients.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/74d4eccb-98b6-47c5-a5fa-15115d7e1745