Revealing noncollinear magnetic ordering at the atomic scale via XMCD

Link:
Autor/in:
Erscheinungsjahr:
2021
Medientyp:
Text
Beschreibung:
  • Mass-selected V and Fe monomers, as well as the heterodimer Fe 1V 1, were deposited on a Cu(001) surface. Their electronic and magnetic properties were investigated via X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy. Anisotropies in the magnetic moments of the deposited species could be examined by means of angle resolving XMCD, i.e. changing the X-ray angle of incidence. A weak adatom-substrate-coupling was found for both elements and, using group theoretical arguments, the ground state symmetries of the adatoms were determined. For the dimer, a switching from antiparallel to parallel orientation of the respective magnetic moments was observed. We show that this is due to the existence of a noncollinear spin-flop phase in the deposited dimers, which could be observed for the first time in such a small system. Making use of the two magnetic sublattices model, we were able to find the relative orientations for the dimer magnetic moments for different incidence angles.

  • Mass-selected V and Fe monomers, as well as the heterodimer $${\text{Fe}}_1{\text{V}}_1$$, were deposited on a Cu(001) surface. Their electronic and magnetic properties were investigated via X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy. Anisotropies in the magnetic moments of the deposited species could be examined by means of angle resolving XMCD, i.e. changing the X-ray angle of incidence. A weak adatom-substrate-coupling was found for both elements and, using group theoretical arguments, the ground state symmetries of the adatoms were determined. For the dimer, a switching from antiparallel to parallel orientation of the respective magnetic moments was observed. We show that this is due to the existence of a noncollinear spin-flop phase in the deposited dimers, which could be observed for the first time in such a small system. Making use of the two magnetic sublattices model, we were able to find the relative orientations for the dimer magnetic moments for different incidence angles.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/51482158-7dbb-4170-81fe-651f2b92d6d8