Two-body correlations and natural-orbital tomography in ultracold bosonic systems of definite parity

Link:
Autor/in:
Erscheinungsjahr:
2015
Medientyp:
Text
Schlagworte:
  • Lattices
  • Gases
  • Harmonic trap
  • Atoms
  • Bose-Einstein Condensates
  • Lattices
  • Gases
  • Harmonic trap
  • Atoms
  • Bose-Einstein Condensates
Beschreibung:
  • The relationship between natural orbitals, one-body coherences, and two-body correlations is explored for bosonic many-body systems of definite parity with two occupied single-particle states. We show that the strength of local two-body correlations at the parity-symmetry center characterizes the number-state distribution and controls the structure of nonlocal two-body correlations. A recipe for the experimental reconstruction of the natural-orbital densities and quantum depletion is derived. These insights into the structure of the many-body wave function are applied to the predicted quantum-fluctuation-induced decay of dark solitons.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/b7a70e24-bb7b-4b6d-b6d6-1f26e1fbc4d4