Knot contact homology, string topology, and the cord algebra

Link:
Autor/in:
Erscheinungsjahr:
2017
Medientyp:
Text
Schlagworte:
  • Contact structure
  • Contact
  • Tight contact
  • Algebra
  • Category
  • Module
  • Legendrian submanifold
  • Conormal bundle
  • Knot invariant
  • Holomorphic curve
  • Lagrangian submanifold
  • String topology
  • Contact structure
  • Contact
  • Tight contact
  • Algebra
  • Category
  • Module
Beschreibung:
  • The conormal Lagrangian LK of a knot K in R3 is the submanifold of the cotangent bundle T∗R3 consisting of covectors along K that annihilate tangent vectors to K. By intersecting with the unit cotangent bundle S∗R3, one obtains the unit conormal ΛK, and the Legendrian contact homology of ΛK is a knot invariant of K, known as knot contact homology. We define a version of string topology for strings in R3 ∪ LK and prove that this is isomorphic in degree 0 to knot contact homology. The string topology perspective gives a topological derivation of the cord algebra (also isomorphic to degree 0 knot contact homology) and relates it to the knot group. Together with the isomorphism this gives a new proof that knot contact homology detects the unknot. Our techniques involve a detailed analysis of certain moduli spaces of holomorphic disks in T∗R3 with boundary on R3 ∪ LK.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/07fc7f28-a327-4806-80d2-a3c611716bb6