The effect of mesenchymal stem cell osteoblastic differentiation on the mechanical properties of engineered bone-like tissue.

Link:
Autor/in:
Erscheinungsjahr:
2011
Medientyp:
Text
Beschreibung:
  • Mesenchymal stem cells (MSCs) can give rise to osteoblasts and have therefore been suggested as a cell source for bone engineering. Here we hypothesized that MSC osteoblastic differentiation and maturation can be supported by three-dimensional cultures in collagen hydrogels (hydrogel culture) to ultimately give rise to mechanically robust bone-like tissue. We first compared the osteoblastic differentiation efficiency of MSCs using osteoinductive supplements (?-glycerophosphate, vitamin C, and dexamethasone) in a hydrogel culture and in a two-dimensional culture (2D culture) by assessing surrogate parameters for osteoblastic differentiation, including osteocalcin (OC) secretion and calcium (Ca) deposition. We next constructed ring-shaped bone-like tissues using MSCs in the hydrogel cultures, and assessed their mechanical (strain-strain analysis), biochemical/molecular (OC secretion, Ca deposition, and Runx2/osterix mRNA levels), and morphological (von Kossa staining) properties. OC secretions and Ca depositions were significantly higher in the hydrogel cultures than those in the 2D cultures, suggesting better osteoblastic differentiation and maturation in the hydrogel cultures. Collagen hydrogel-based ring-shaped bone-like tissues conditioned with osteoinductive supplements developed enhanced biomechanical properties, including high tissue stiffness and ultimate burst strength, superior molecular/biochemical properties, and morphological signs typically found in mineralized bone. These results may be exploited not only to generate bioartificial bone, but also to elucidate the basic mechanisms of bone physiology.
  • Mesenchymal stem cells (MSCs) can give rise to osteoblasts and have therefore been suggested as a cell source for bone engineering. Here we hypothesized that MSC osteoblastic differentiation and maturation can be supported by three-dimensional cultures in collagen hydrogels (hydrogel culture) to ultimately give rise to mechanically robust bone-like tissue. We first compared the osteoblastic differentiation efficiency of MSCs using osteoinductive supplements (?-glycerophosphate, vitamin C, and dexamethasone) in a hydrogel culture and in a two-dimensional culture (2D culture) by assessing surrogate parameters for osteoblastic differentiation, including osteocalcin (OC) secretion and calcium (Ca) deposition. We next constructed ring-shaped bone-like tissues using MSCs in the hydrogel cultures, and assessed their mechanical (strain-strain analysis), biochemical/molecular (OC secretion, Ca deposition, and Runx2/osterix mRNA levels), and morphological (von Kossa staining) properties. OC secretions and Ca depositions were significantly higher in the hydrogel cultures than those in the 2D cultures, suggesting better osteoblastic differentiation and maturation in the hydrogel cultures. Collagen hydrogel-based ring-shaped bone-like tissues conditioned with osteoinductive supplements developed enhanced biomechanical properties, including high tissue stiffness and ultimate burst strength, superior molecular/biochemical properties, and morphological signs typically found in mineralized bone. These results may be exploited not only to generate bioartificial bone, but also to elucidate the basic mechanisms of bone physiology.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/d68f5f8c-8b48-4462-aeaa-1c21ac4c8bf3