Zum Inhalt springen
Cayley-Klein's model of dimension-free hyperbolic geometry via projective mappings
-
Link:
-
-
Autor/in:
-
-
Erscheinungsjahr:
-
2008
-
Medientyp:
-
Text
-
Schlagworte:
-
-
Cayley-Klein model
-
Dimension-free
-
δ-affine
-
δ-linear
-
δ-projective
-
Beschreibung:
-
-
With respect to notation and notions we will follow our book Classical Geometries in Modern Contexts, Birkhäuser, 2005. If (X, δ), dim X ≥ 2, is a real inner product space, exactly the subsets H(a, α) = {x ε X | δ(a, x) = α} of X with 0 ≠ a ε X and α ε ℝ are called Euclidean hyperplanes of (X, δ). Concerning the notion of a quasi-hyperplane of (X, δ) see in our book, p. 50. In this note we characterize all δ-affine mappings of (X, δ), i.e. all bijections of X such that images and inverse images of Euclidean hyperplanes are Euclidean hyperplanes, by δ-linear mappings. As in our book we do not assume that X is finite-dimensional. Furthermore, we introduce δ-projective mappings and characterize Cayley-Klein's model dimension-free by those mappings. © 2008 Birkhäuser Verlag AG.
-
Lizenz:
-
-
info:eu-repo/semantics/closedAccess
-
Quellsystem:
-
Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/5ad1aef9-9952-4c09-b2a8-9da948279624