Optically thin clouds in the trades

Link:
Autor/in:
Verlag/Körperschaft:
Copernicus GmbH
Erscheinungsjahr:
2021
Medientyp:
Text
Beschreibung:
  • We develop a new method to describe the total cloud cover including optically thin clouds in trade wind cu-mulus cloud fields. Climate models as well as Large Eddy Simulations commonly underestimate the cloud cover, while estimates from observations largely disagree on the cloud 5 cover in the trades. Currently, trade wind clouds contribute significantly to the uncertainty in climate sensitivity estimates derived from model perturbation studies. To simulate clouds well and especially how they change in a future climate we have to know how cloudy it is. 10 In this study we develop a method to quantify the cloud cover from a clear-sky perspective. Using well-known radia-tive transfer relations we retrieve the clear-sky contribution in high-resolution satellite observations of trade cumulus cloud fields during EUREC 4 A. Knowing the clear-sky part, we can 15 investigate the remaining cloud-related contributions consisting of areas detected by common cloud masking algorithms and those undetected areas related to optically thin clouds. We find that the cloud-mask cloud cover underestimates the total cloud cover by a factor of 2. Lidar measurements on 20 board the HALO aircraft support our findings by showing a high abundance of optically thin clouds during EUREC 4 A. Mixing the undetected optically thin clouds into the clear-sky signal can cause an underestimation of the cloud radia-tive effect of up to-31%. We further discuss possible artifi-25 cial correlations in aersol-cloud cover interaction studies that might arise from undetected optically thin clouds. Our analysis suggests that the known underestimation of trade wind cloud cover and simultaneous overestiamtion of cloud brightness in models is even higher than assumed so far.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/8ce31ba8-2bc2-4ffc-b286-75eb6d93b857