Plasmonic Skyrmion Lattice Based on the Magnetoelectric Effect

Link:
Autor/in:
Verlag/Körperschaft:
American Physical Society
Erscheinungsjahr:
2020
Medientyp:
Text
Schlagworte:
  • 530: Physik
  • ddc:530
Beschreibung:
  • © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society. The physical mechanism of the plasmonic skyrmion lattice formation in a magnetic layer deposited on a metallic substrate is studied theoretically. The optical lattice is the essence of the standing interference pattern of the surface plasmon polaritons created through coherent or incoherent laser sources. The nodal points of the interference pattern play the role of lattice sites where skyrmions are confined. The confinement appears as a result of the magnetoelectric effect and the electric field associated with the plasmon waves. The proposed model is applicable to yttrium iron garnet and single-phase multiferroics and combines plasmonics and skyrmionics.
Quellsystem:
ReposIt

Interne Metadaten
Quelldatensatz
oai:reposit.haw-hamburg.de:20.500.12738/10578