ℤ/2ℤ-extensions of Hopf algebra module categories by their base categories

Link:
Autor/in:
Erscheinungsjahr:
2013
Medientyp:
Text
Schlagworte:
  • Hopf algebra
  • Category
  • Fusion category
  • Algebra
  • Module
  • Hopf algebras and their representations
  • Braided monoidal categories
  • Hopf algebra
  • Category
  • Fusion category
  • Algebra
  • Module
Beschreibung:
  • Starting with a self-dual Hopf algebra H in a braided monoidal category S we construct a Z/2Z-graded monoidal category C = C-0+C-1. The degree zero component is the category Reps (H) of representations of H and the degree one component is the category S. The extra structure on H needed to define the associativity isomorphisms is a choice of self-duality map and cointegral, subject to certain conditions. We also describe rigid, braided and ribbon structures on C in Hopf algebraic terms. Our construction permits a uniform treatment of Tambara-Yamagami categories and categories related to symplectic fermions in conformal field theory. (C) 2013 Published by Elsevier Inc.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/bd3e9a48-f89b-452e-ae9e-29c83378df8d