Wave propagation in weakly anisotropic inhomogeneous media is studied by the quasi-isotropic approximation of ray theory. The approach is based on the ray-tracing and dynamic ray-tracing differential equations for an isotropic background medium. In addition, it requires the integration of a system of two complex coupled differential equations along the isotropic ray. The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium. Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy. The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails.