Improving eye-tracking data quality: A framework for reproducible evaluations of detection algorithms

Link:
Autor/in:
Verlag/Körperschaft:
Universität Hamburg
Erscheinungsjahr:
2023
Medientyp:
Text
Beschreibung:
  • The individual error scores for different pupil detection algorithms as reported in the manuscript "Improving eye-tracking data quality: A framework for reproducible evaluations of detection algorithms"

Beziehungen:
DOI 10.25592/uhhfdm.13719
Lizenzen:
  • https://creativecommons.org/licenses/by/4.0/legalcode
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsdatenrepositorium des UKE

Interne Metadaten
Quelldatensatz
oai:fdr.uni-hamburg.de:13720