Left-invariant Einstein metrics on S3×S3

Link:
Autor/in:
Erscheinungsjahr:
2018
Medientyp:
Text
Schlagworte:
  • Einstein manifolds
  • Homogeneous compact spaces
  • Left-invariant Einstein metrics
  • Product of two 3-spheres
  • SU(2) x SU(2)
  • Six dimensions
Beschreibung:
  • The classification of homogeneous compact Einstein manifolds in dimension six is an open problem. We consider the remaining open case, namely left-invariant Einstein metrics g on G=SU(2)×SU(2)=S3×S3. Einstein metrics are critical points of the total scalar curvature functional for fixed volume. The scalar curvature S of a left-invariant metric g is constant and can be expressed as a rational function in the parameters determining the metric. The critical points of S, subject to the volume constraint, are given by the zero locus of a system of polynomials in the parameters. In general, however, the determination of the zero locus is apparently out of reach. Instead, we consider the case where the isotropy group K of g in the group of motions is non-trivial. When K≇Z2 we prove that the Einstein metrics on G are given by (up to homothety) either the standard metric or the nearly Kähler metric, based on representation-theoretic arguments and computer algebra. For the remaining case K≅Z2 we present partial results.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/168e071a-c035-42df-846e-b05387f7eefd