Quasi-nodal third-order Bernstein polynomials in a discontinuous Galerkin model for flooding and drying

Link:
Autor/in:
Erscheinungsjahr:
2015
Medientyp:
Text
Schlagworte:
  • Finite volume method
  • Equations of motion
  • Volume scheme
  • Finite Element Method
  • Galerkin Methods
  • Errors
  • Finite volume method
  • Equations of motion
  • Volume scheme
  • Finite Element Method
  • Galerkin Methods
  • Errors
Beschreibung:
  • A quasi-nodal discontinuous Galerkin (DG) model employs monotonicity preserving Bernstein polynomials as basis functions in combination with an efficient vertex-based slope limiter. As opposed to classical nodal Lagrange DG models, it simulates flooding and drying stably even with higher than second-order basis functions. We study the viability of the latter for inundation simulations in general and discuss the quality of the new basis functions. A subsequent numerical study demonstrates the conservation properties and local convergence rates of the new method.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/88666786-428b-4843-8471-4f508ef2b8c9