Modified traces and monadic cointegrals for quasi-Hopf algebras,Modifizierte Spuren und monadische Kointegrale für quasi-Hopfalgebren

Link:
Autor/in:
Beteiligte Personen:
  • Runkel, Ingo
  • Gainutdinov, Azat M.
Verlag/Körperschaft:
Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky
Erscheinungsjahr:
2021
Medientyp:
Text
Schlagworte:
  • quasi-Hopfalgebra
  • Monade
  • Kointegral
  • modifizierte Spur
  • modified trace
  • 510: Mathematik
  • 31.29: Algebra: Sonstiges
  • Hopf-Algebra
  • Monoidale Kategorie
  • Monade <Mathematik>
  • Spur <Mathematik>
  • Modulkategorie
  • Darstellungstheorie
  • ddc:510:
  • Hopf-Algebra
  • Monoidale Kategorie
  • Monade <Mathematik>
  • Spur <Mathematik>
  • Modulkategorie
  • Darstellungstheorie
Beschreibung:
  • We introduce the notion of γ-symmetrized cointegrals for a finite-dimensional pivotal quasi-Hopf algebra H over a field k, where γ is the modulus of J In case H is unimodular and k is algebraically closed, we give explicit bijections relating them to non-degenerate left and right modified traces on the tensor ideal of projective H-modules in the (finite tensor) category of finite-dimensional left H-modules, generalizing previous Hopf-algebraic results from Beliakova-Blanchet-Gainutdinov. Then we introduce monadic cointegrals in (pivotal) finite tensor categories. For a pivotal finite tensor category C, four versions (A₁, ..., A₄) of the so-called central Hopf monad exist. A monadic cointegral for A_i is a morphism of A_i-modules 1 -> A_i(D), where D is the distinguished invertible object of C; we relate them to Shimizu's categorical cointegral, and in the braided case to the integral of Lyubashenko's Hopf algebra ∫^(X in C) X* x X. If C is the category of modules over a pivotal Hopf algebra H, then one easily sees that the four monadic cointegrals are given by four notions of cointegrals for H, including γ-symmetrized cointegrals. We show that this relation, up to non-trivial isomorphisms, remains true if H is a quasi-Hopf algebra, i.e. we relate the cointegrals of Hausser and Nill and the γ-symmetrized cointegrals above to monadic cointegrals for the category of H-modules. Finally, for a modular tensor category C, we concern ourselves with the projective SL(2,Z)-actions (on certain Hom-spaces in C) constructed by Lyubashenko. In the case that C is the category of modules over a factorizable ribbon quasi-Hopf algebra H, we derive a simple expression for the action of the S- and T-generators on the center of H using the monadic cointegral. Let now H be the quasi-Hopf algebra modification of the restricted quantum group of SL(2,Z) at a primitive 2p-th root of unity as constructed by Creutzig-Gainutdinov-Runkel, for an integer p ≥ 2. We show that Lyubashenko's action on the center of H agrees projectively with the SL(2,Z)-action on the center of the (original) restricted quantum group, as constructed by Feigin-Gainutdinov-Semikhatov-Tipunin.
Lizenzen:
  • http://purl.org/coar/access_right/c_abf2
  • info:eu-repo/semantics/openAccess
  • https://creativecommons.org/licenses/by/4.0/
Quellsystem:
E-Dissertationen der UHH

Interne Metadaten
Quelldatensatz
oai:ediss.sub.uni-hamburg.de:ediss/9016