The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation

Link:
Autor/in:
Erscheinungsjahr:
2015
Medientyp:
Text
Schlagworte:
  • A posteriori error estimates
  • A posteriori error estimators
  • Nonconforming finite
  • Finite Element Method
  • Galerkin Methods
  • Errors
  • Space-time finite elements
  • DWR method
  • Goal-oriented adaptivity
  • Black-Scholes equation
  • Damped Crank-Nicolson method
  • Adjoint consistent
  • A posteriori error estimates
  • A posteriori error estimators
  • Nonconforming finite
  • Finite Element Method
  • Galerkin Methods
  • Errors
Beschreibung:
  • This paper is concerned with the derivation of a residual-based a posteriori error estimator and mesh-adaptation strategies for the space-time finite element approximation of parabolic problems with irregular data. Typical applications arise in the field of mathematical finance, where the Black-Scholes equation is used for modeling the pricing of European options. A conforming finite element discretization in space is combined with second-order time discretization by a damped Crank-Nicolson scheme for coping with data irregularities in the model. The a posteriori error analysis is developed within the general framework of the dual weighted residual method for sensitivity-based, goal-oriented error estimation and mesh optimization. In particular, the correct form of the dual problem with damping is considered.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/941bb2a3-b3be-482d-a1a2-745c042d79f8