Hybrid classifiers for improved semantic subspace learning of news documents

Link:
Autor/in:
Beteiligte Person:
  • Abraham , Ajith
Verlag/Körperschaft:
IEEE
Erscheinungsjahr:
2011
Medientyp:
Text
Schlagworte:
  • Models
  • Neural networks
  • Genetic algorithm
  • Vehicle Routing
  • Algorithms
  • Vehicles
  • News Categorization
  • Hybrid Classifiers
  • Text Classification
  • Semantic Subspace Learning
  • Maximum Significance Value
  • Models
  • Neural networks
  • Genetic algorithm
  • Vehicle Routing
  • Algorithms
  • Vehicles
Beschreibung:
  • The volume and diversity of documents available in today's world is increasing daily. It is therefore difficult for a single classifier to efficiently handle multi-level categorization of such a varied document space. In this paper we analyse methods to enhance the efficiency of a single classifier for two-level classification by combining it with classifiers of other types. We use the maximum significance value as an indicator for the subspace of a test document. We represent the documents using the conditional significance vector which increases the distinction between classes within a subspace. Our experiments show that dividing a document space into different semantic subspaces increases the efficiency of such hybrid classifier combinations. Applying different types of classifiers on different subspaces substantially improves overall learning.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/fcf2d5ee-b749-449c-bcce-8d3809fdada1