The skein lasagna module is an extension of Khovanov-Rozansky homology to the setting of a four-manifold and a link in its boundary. This invariant plays the role of the Hilbert space of an associated fully extended (4+epsilon)-dimensional TQFT. We give a general procedure for expressing the skein lasagna module in terms of a handle decomposition for the four-manifold. We use this to calculate a few examples, and show that the skein lasagna module can sometimes be locally infinite dimensional.