Tailoring the chiral magnetic interaction between two individual atoms

Link:
Autor/in:
Erscheinungsjahr:
2016
Medientyp:
Text
Schlagworte:
  • Adatoms
  • Spin
  • Magnetic atoms
  • Magnetic Anisotropy
  • Magnetization
  • Magnetism
  • Adatoms
  • Spin
  • Magnetic atoms
  • Magnetic Anisotropy
  • Magnetization
  • Magnetism
Beschreibung:
  • Chiral magnets are a promising route towards dense magnetic storage technology due to their inherent nano-scale dimensions and energy efficient properties. Engineering chiral magnets requires atomic-level control of the magnetic exchange interactions, including the Dzyaloshinskii–Moriya interaction, which defines a rotational sense for the magnetization of two coupled magnetic moments. Here we show that the indirect conduction electron-mediated Dzyaloshinskii–Moriya interaction between two individual magnetic atoms on a metallic surface can be manipulated by changing the interatomic distance with the tip of a scanning tunnelling microscope. We quantify this interaction by comparing our measurements to a quantum magnetic model and ab-initio calculations yielding a map of the chiral ground states of pairs of atoms depending on the interatomic separation. The map enables tailoring the chirality of the magnetization in dilute atomic-scale magnets.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/190cc78e-631c-49d3-bb05-9d5b8daf62ed