Federated machine learning in data-protection-compliant research Link: https://doi.org/10.1038/s42256-022-00601-5 Autor/in: Brauneck, Alissa Schmalhorst, Louisa Kazemi Majdabadi, Mohammad Mahdi Bakhtiari, Mohammad Völker, Uwe Saak, Christina Caroline; id_orcid 0000-0001-7041-8531 Baumbach, Jan; id_orcid 0000-0002-0282-0462 Baumbach, Linda Buchholtz, Gabriele Zeige mehr (+2)… Zeige weniger… Erscheinungsjahr: 2023 Medientyp: Text Beschreibung: To fully leverage big data, they need to be shared across institutions in a manner compliant with privacy considerations and the EU General Data Protection Regulation (GDPR). Federated machine learning is a promising option. Lizenz: info:eu-repo/semantics/closedAccess Quellsystem: Forschungsinformationssystem der UHH Interne Metadaten Quelldatensatz oai:www.edit.fis.uni-hamburg.de:publications/ce658f88-c7e0-48a7-84b4-353bb747f0f1