NER-Modell 22 des Projekts Dehmel Digital

Link:
Autor/in:
Verlag/Körperschaft:
Universität Hamburg
Erscheinungsjahr:
2022
Medientyp:
Datensatz
Schlagworte:
  • Named Entity Recognition
  • Digital Humanities
  • Historical Documents
  • Machine Learning
Beschreibung:
  • This dataset contains two types of resources: Firstly, one Named Entity Recognition model developed in the context of the project "Dehmel digital" for the automatic annotation of persons, places, artworks and organisations in german-speaking letters from the period around 1900. The training corpus for model 20 consists of circa 270,000 manually annotated tokens.
    Second, a table in which the results of the performance test are broken down in detail. The performance was calculated on the basis of eight different test texts, each consisting of 10,000 manually annotated tokens.

relatedIdentifier:
DOI 10.25592/uhhfdm.9790 DOI 10.25592/uhhfdm.10829
Lizenzen:
  • https://creativecommons.org/licenses/by/4.0/legalcode
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsdatenrepositorium der UHH

Interne Metadaten
Quelldatensatz
oai:fdr.uni-hamburg.de:10830