On Dirac Generating Operators and Clifford Module Bundles

Link:
Autor/in:
Beteiligte Personen:
  • Cortes, Vicente
  • Leistner, Thomas
Verlag/Körperschaft:
Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky
Erscheinungsjahr:
2022
Medientyp:
Text
Schlagworte:
  • spinors
  • clifford algebra
  • module bundle
  • Dirac operators
  • generalised geometry
  • 510: Mathematik
  • 31.00: Mathematik: Allgemeines
  • ddc:510:
Beschreibung:
  • Die vorliegende Arbeit befasst sich mit irreduziblen Clifford-Modulbündeln und Dirac-Erzeugendenoperatoren von Courant-Algebroiden. Irreduzible Clifford-Modulbündel sind reelle Vektorbündel, die eine Darstellung eines reellen Clifford-Algebra-Bündels tragen, sodass die Darstellungen faserweise vom gleichen ‘Typ’ sind, d.h. sie sind alle äquivalent zu einer festen irreduziblen Darstellung einer reellen Clifford-Algebra. Als eines der Hauptergebnisse dieser Arbeit beweisen wir eine Beziehung zwischen beliebigen irreduziblen Clifford-Modulbündeln des gleichen Typs und verwenden diese Beziehung, um alle derartigen Modulbündel zu klassifizieren. Genauer, gegeben ein festes irreduzibles Clifford- Modulbündel, beweisen wir eine Bijektion zwischen den Isomorphieklassen aller irreduziblen Cliffordmodulbündel vom gleichen Typ wie dieses feste Bündel und den Isomorphieklassen aller Modulbündeln, die die reguläre Darstellung des Schur-Algebra-Bündels des festen Modulbündels tragen. Dirac-Erzeugendenoperatoren von Courant-Algebroiden sind gewisse Differentialoperatoren erster Ordnung auf irreduziblen Clifford-Modulbündeln. Die lokale Existenz dieser Operatoren, wenn das Skalarprodukt des Courant-Algebroids neutrale Signatur (p, p) hat, wurde von Alekseev und Xu in [AX] bewiesen. Wir nutzen unsere Ergebnisse über Clifford-Modulbündel, um diese Aussage auf die Existenz lokaler Dirac-Erzeugendenoperatoren von Courant-Algebroiden mit beliebigen Signaturen zu verallgemeinern. Ein weiteres Hauptergebnis dieser Arbeit ist die Beschreibung der Menge der Dirac-Erzeugendenoperatoren eines Courant-Algebroids von Signatur (p, p + 1) als affiner Raum. Hierbei ist die Differenz zweier solcher Operatoren gegeben durch Clifford-Multiplikation mit einem Schnitt des Courant-Algebroids, der eine bestimmte Bedingung erfüllt. Die vorliegende ist die erste Forschungsarbeit über Dirac-Erzeugendenoperatoren, die nicht-neutrale Signaturen explizit berücksichtigt.
Lizenzen:
  • http://purl.org/coar/access_right/c_abf2
  • info:eu-repo/semantics/openAccess
  • https://creativecommons.org/licenses/by/4.0/
Quellsystem:
E-Dissertationen der UHH

Interne Metadaten
Quelldatensatz
oai:ediss.sub.uni-hamburg.de:ediss/10146