For answering top-k queries in which attributes are aggregated to a scalar value for defining a ranking, usually the well-known branch-and-bound principle can be used for efficient query answering. Standard algorithms (e.g., Branch-and-Bound Ranked Search, BRS for short) require scoring functions to be monotone, such that a top-k ranking can be computed in sublinear time in the average case. If monotonicity cannot be guaranteed, efficient query answering algorithms are not known. To make branch-and-bound effective with descending or ascending rankings (maximum top-k or minimum top-k queries, respectively), BRS must be able to identify bounds for exploring search partitions, and only for monotonic ranking functions this is trivial. In this paper, we investigate the class of quasi-convex functions used for scoring objects, and we examine how bounds for exploring data partitions can correctly and efficiently be computed for quasi-convex functions in BRS for maximum top-k queries. Given that quasi-convex scoring functions can usefully be employed for ranking objects in a variety of applications, the mathematical findings presented in this paper are indeed significant for practical top-k query answering.