Distributed double machine learning with a serverless architecture

Link:
Autor/in:
Verlag/Körperschaft:
Association for Computing Machinery (ACM)
Erscheinungsjahr:
2021
Medientyp:
Text
Schlagworte:
  • Containers
  • Lambda
  • Serverless Computing
  • Cloud Computing
  • Clouds
  • Distributed Computer Systems
  • Containers
  • Lambda
  • Serverless Computing
  • Cloud Computing
  • Clouds
  • Distributed Computer Systems
Beschreibung:
  • This paper explores serverless cloud computing for double machine learning. Being based on repeated cross-fitting, double machine learning is particularly well suited to exploit the high level of parallelism achievable with serverless computing. It allows to get fast on-demand estimations without additional cloud maintenance effort. We provide a prototype Python implementation DoubleML-Serverless for the estimation of double machine learning models with the serverless computing platform AWS Lambda and demonstrate its utility with a case study analyzing estimation times and costs.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/870d5a43-e335-4759-a0e1-1e58e2bde8c0