The structure of 2-separations of infinite matroids

Link:
Autor/in:
Erscheinungsjahr:
2016
Medientyp:
Text
Schlagworte:
  • Infinite
  • Matroid
  • Infinite graphs
  • Graph In Graph Theory
  • Coloring
  • Graphic Methods
  • Tutte
  • 2-separation
  • Edmonds
  • Tree-decomposition
  • 3-connected
  • Cunningham
  • Seymour
  • Infinite
  • Matroid
  • Infinite graphs
  • Graph In Graph Theory
  • Coloring
  • Graphic Methods
Beschreibung:
  • Generalizing a well known theorem for finite matroids, we prove that for every (infinite) connected matroid M there is a unique tree T such that the nodes of T correspond to minors of M that are either 3-connected or circuits or cocircuits, and the edges of T correspond to certain nested 2-separations of M. These decompositions are invariant under duality.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/fc5d7729-7020-45c4-9173-0333e17a4d1d