On the Rosenberg-Zelinsky sequence in abelian monoidal categories

Link:
Autor/in:
Erscheinungsjahr:
2010
Medientyp:
Text
Schlagworte:
  • Hopf algebra
  • Category
  • Fusion category
  • Algebra
  • Module
  • Hopf algebra
  • Category
  • Fusion category
  • Algebra
  • Module
Beschreibung:
  • We consider Frobenius algebras and their bimodules in certain abelian monoidal categories. In particular we study the Picard group of the category of bimodules over a Frobenius algebra, i.e. the group of isomorphism classes of invertible bimodules. The Rosenberg-Zelinsky sequence describes a homomorphism from the group of algebra automorphisms to the Picard group, which however is typically not surjective. We investigate under which conditions there exists a Morita equivalent Frobenius algebra for which the corresponding homomorphism is surjective. One motivation for our considerations is the orbifold construction in conformal field theory.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/58366bd0-5ea8-4282-b37a-7ca41665fd39