Optimal control of the Laplace-Beltrami operator on compact surfaces: concept and numerical treatment

Link:
Autor/in:
Erscheinungsjahr:
2012
Medientyp:
Text
Schlagworte:
  • Finite element method
  • Surfaces
  • Cut finite
  • Finite Element Method
  • Galerkin Methods
  • Errors
  • Finite element method
  • Surfaces
  • Cut finite
  • Finite Element Method
  • Galerkin Methods
  • Errors
Beschreibung:
  • We consider optimal control problems of elliptic PDEs on hypersurfaces Gamma in R-n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of Gamma. The discrete optimal control problem is formulated on the approximating surface and is solved numerically with a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems including control constraints and provide numerical examples confirming our analytical findings.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/d44af0e8-19c8-4da6-a305-101d79bb1ab3